Wireless IP, The Killer Application !?

My website and thesis captures the essential elements in the convergence path of wireless networks and Internet protocols resulting in the new paradigm of "Wireless IP." It covers all the important 1G/2G cellular technologies that I have seen in the past decade, along with 3G and 4G, Wireless Local Area Network (WLAN) technologies,including modifications required in protocols, architectures, and framework in virtually every area such as QoS, security, mobility, and so on.

The thesis can be useful for anyone who is interested in the convergence of the wireless and IP networks and for them who need to understand how packet data services and IP work in the wireless world. Furthermore, the thesis represents my views and opinions , based on my technical understanding and experience in these areas

Because the increase of higher system capacities and data rates provided by latest and proposed wireless network technologies, and their closer integration with the Internet enabled by the IP technologies used in these wireless networks are enabling many new ways for people to communicate.
Also people on moving vehicles (e.g. cars, trains, boats and airplanes) may access the Internet or their enterprise networks the same way as when they are at their offices or homes. They may be able to surf the Internet, access their corporate networks, download games from the network, play games with remote users, obtain tour guidance information, obtain real-time traffic and route conditions information.

Wireless networks are evolving into wireless IP networks to overcome the limitations of traditional circuit-switched wireless networks. Wireless IP networks are more suitable for supporting the rapidly growing mobile data and multimedia applications.
IP technologies (such as Mobile IP) are the most promising solutions available today for supporting data and multimedia applications over wireless networks. IP-based wireless networks will bring the globally successful Internet service into wireless networks. The mobile or wireless Internet will be an extension to the current Internet.

Advanced mobile data and multimedia applications such as; MMS, play games in real time with remote users, Voice over wireless (VoIP calls) and broadcasting of audio and video advertisements to mobile phone users such as: advertiser supported phone calls, Wireless IP-enabled radio and watch TV, will grow very fast. New IP broadcasting techniques such as DVB-H (Digital Video Broadcasting for Handhelds), will make it possible to bring video broadcasting services to handheld receivers.

In particular, the growth of advanced mobile data and multimedia applications such as Voice-over-IP (VoIP) help increase multimedia traffic over the wireless networks significantly. Thus, Wireless IP can also be a killer sometimes. Therefore future Wireless IP networks can only be able to service those mobile data and multimedia applications without congestions in the Wireless network, if those Wireless IP networks are ready for it. In other words, "those networks need to be controlled (e.g. by QoS parameters or other specific protocols) end must have enough bandwidth to support all this types of services. Wireless networks and the IP technologies within those networks have to be reviewed and evolved constantly.

Remark these words:
The traffic on broadband wireless networks will be increasingly IP


How Mobile IP Works


In brief, Mobile IP routing works as follows. Packets destined to a mobile node are routed first to its home network; a network identified by the network prefix of the mobile node’s (permanent) home address. At the home network, the mobile node’s home agent intercepts such packets and tunnels them to the mobile node’s most recently reported care-of address. At the endpoint of the tunnel, the inner packets are de-capsulated and delivered to the mobile node. In the reverse direction, packets sourced by mobile nodes are routed to their destination using standard IP routing mechanisms.

Before getting into more detail, it is a good idea to frame the discussion by setting some terminology. Mobile IP introduces the following functional entities:

Mobile node (MN): A host or router that changes its point of attachment from one network or sub-network to another, without changing its IP address. A mobile node can continue to communicate with other Internet nodes at any location using its (constant) IP address.

Home agent (HA): A router on a mobile node’s home network which delivers datagram’s to departed mobile nodes, and maintains current location information for each.

Foreign agent (FA): A router on a mobile node’s visited network which cooperates with the home agent to complete the delivery of datagram’s to the mobile node while it is away from home.

A mobile node has a home address, which is a long-term IP address on its home network. When away from its home network, a care-of address is associated with the mobile node and reflects the mobile node’s current point of attachment. The mobile node uses its home address as the source address of all IP datagram’s it sends, except where otherwise required for certain registration request datagram’s.