Wireless IP, The Killer Application !?

My website and thesis captures the essential elements in the convergence path of wireless networks and Internet protocols resulting in the new paradigm of "Wireless IP." It covers all the important 1G/2G cellular technologies that I have seen in the past decade, along with 3G and 4G, Wireless Local Area Network (WLAN) technologies,including modifications required in protocols, architectures, and framework in virtually every area such as QoS, security, mobility, and so on.

The thesis can be useful for anyone who is interested in the convergence of the wireless and IP networks and for them who need to understand how packet data services and IP work in the wireless world. Furthermore, the thesis represents my views and opinions , based on my technical understanding and experience in these areas

Because the increase of higher system capacities and data rates provided by latest and proposed wireless network technologies, and their closer integration with the Internet enabled by the IP technologies used in these wireless networks are enabling many new ways for people to communicate.
Also people on moving vehicles (e.g. cars, trains, boats and airplanes) may access the Internet or their enterprise networks the same way as when they are at their offices or homes. They may be able to surf the Internet, access their corporate networks, download games from the network, play games with remote users, obtain tour guidance information, obtain real-time traffic and route conditions information.

Wireless networks are evolving into wireless IP networks to overcome the limitations of traditional circuit-switched wireless networks. Wireless IP networks are more suitable for supporting the rapidly growing mobile data and multimedia applications.
IP technologies (such as Mobile IP) are the most promising solutions available today for supporting data and multimedia applications over wireless networks. IP-based wireless networks will bring the globally successful Internet service into wireless networks. The mobile or wireless Internet will be an extension to the current Internet.

Advanced mobile data and multimedia applications such as; MMS, play games in real time with remote users, Voice over wireless (VoIP calls) and broadcasting of audio and video advertisements to mobile phone users such as: advertiser supported phone calls, Wireless IP-enabled radio and watch TV, will grow very fast. New IP broadcasting techniques such as DVB-H (Digital Video Broadcasting for Handhelds), will make it possible to bring video broadcasting services to handheld receivers.

In particular, the growth of advanced mobile data and multimedia applications such as Voice-over-IP (VoIP) help increase multimedia traffic over the wireless networks significantly. Thus, Wireless IP can also be a killer sometimes. Therefore future Wireless IP networks can only be able to service those mobile data and multimedia applications without congestions in the Wireless network, if those Wireless IP networks are ready for it. In other words, "those networks need to be controlled (e.g. by QoS parameters or other specific protocols) end must have enough bandwidth to support all this types of services. Wireless networks and the IP technologies within those networks have to be reviewed and evolved constantly.

Remark these words:
The traffic on broadband wireless networks will be increasingly IP

Nov
17

UWB’s potential market

By

Today, the definition for ultra wideband, according to the FCC, is any radio technology with a spectrum that occupies greater than 20 percent of the center frequency or a minimum of 500MHz. Recognizing the advantages of new products that could incorporate this technology to benefit public safety, enterprise and consumer applications.

Additional spectrum is also available for use by medical, scientific, law enforcement, fire and rescue organizations.

UWB provides communication capabilities of 55, 80, 110, 160, 200, 320, and 480 Mb/s. The support of transmitting and receiving at data rates of 55, 110, and 200 Mb/s is mandatory. UWB operates within the presence of other 802.11 WiFi systems.  In other words, it will co-exist with WiFi systems, if a UWB system detects an 802.11 signal, it will change frequency.

As you know now, UWB signals are designed for short-range, low-power applications such as motion-detection (auto collision detectors), monitoring large numbers of sensors like weather, hazardous materials, inventory tracking, home automation and many others including range-finding (determining distances) for military (bomb-finding) and penetrating capabilities such as stud-finding (nails in walls).

Comments are closed.